Can Rainwater Harvesting ${ }_{\wedge}$ Reduce Flooding in Florida?

Matt Deitch, Soil and Water Sciences Dept

West Florida Research and Education Center, Milton

Photo credit : Carrie Stevenson, IFAS Extension

How much water can an 80-gallon rain barrel store?
(answer: 80 gallons)
What fraction off a $1000 \mathrm{ft}^{2}$ roof?
The math:

$$
\begin{aligned}
& 80 \text { gallons }\left(\frac{1 \mathrm{ft}^{3}}{7.48 \mathrm{~g}^{\frac{8}{2}}}\right)=10.7 \mathrm{ft}^{3} \\
& \text { of storage } \\
& \text { Depth }=\frac{\text { Volume }}{\text { Area }}=\frac{10.7 \mathrm{ft}^{2 / 2}}{1000 \mathrm{ft}^{2}}=0.0107 \\
& 0.0107 \mathrm{ft}\left(\frac{12 \text { in }}{\mathrm{Lt}^{2}}\right)=0.13 \text { inches rain }
\end{aligned}
$$

So, is there a scale where rainwater harvesting can store a significant amount of rainfall?

So, is there a scale where rainwater harvesting can store a significant amount of rainfall?

Percent rainfall storage is a function of:

- Tank size
- Magnitude of rainfall
- Size of "harvested" area
- Density of harvested areas

Re-claimed septic tanks: potential rainwater cisterns

- Up to 1,500 gallons stored
- Water could be used or passively released

What about "harvested" area, density?

Dataset from Florida Department of Health (2016):

- Wastewater methods for every parcel in Florida (by county)
- (also drinking water methods...)

This dataset can inform structure density.

Question 1: What percentage of water can be stored, if septic tanks were reclaimed as rainwater cisterns?

- Divided the state into a 10-hectare grid
- Counted the number of parcels that use septic tanks in each grid
- Assumed a 2,000
square foot harvested (rooftop) area

How do I analyze this?

Percent volume captured: 25.4 mm rainfall, $185 \mathrm{~m}^{2}$ roof

How do I analyze this?

Percent volume captured: 50.8 mm rainfall, 185
m^{2} roof

Percent volume captured: 101.6 mm rainfall, $185 \mathrm{~m}^{2}$ roof

Several assumptions:

- Main source of flooding is rainwater (not high water tables, tides)
- Rainwater harvesting analysis assumes tanks are empty at $\mathrm{t}=0$
- (Impacts on surface water collection/discharge: use the flood routing model of your choice)

Is there any place where we see this density of houses?

Conclusion 1: Rainwater cisterns via reclaimed septic tanks in general will not have a big impact on flood reduction in Florida.

Question 2: What if everyone were given a 1,500-gallon

 rainwater cistern? Or, asked another way, how much rainwater could be stored if 1,500gallon cisterns were installed throughout Florida?

Parts of
 Miami-Dade County (cut off from GIS analysis):

Much in the 10-15 houses per hectare

 range

Overall impact on rainfall:

Percent volume captured: 50.8 mm rainfall, 185 m^{2} roof

Percent volume captured: 101.6 mm rainfall, $185 \mathrm{~m}^{2}$ roof

Conclusion 2:

- Larger-scale rainwater harvesting (e.g., universal parcel storage, large tank size) has wider but still limited potential for mitigating flooding.
- Decentralized, spatially distributed stormwater management (e.g., rainwater cisterns) may have significant benefits as part of a treatment train.

Can Rainwater Harvesting Reduce
 Can Rainwater Harvesting Reduce Flooding in Florida?

Matt Deitch, Soil and Water Sciences Dept
West Florida Research and Education Center, Milton mdeitch@ufl.edu

Acknowledgements:

- Support from USDA CRIS Award FLA-WFL-005577
- WFREC staff
- FDOH, Water Management Districts, FDEP for making data available.

